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An extensive redox chemistry associated with high oxidation
state Ru(IV) oxo complexes has been uncovered by kinetic and
mechanistic studies.1-4 This includes pathways involving well-
defined, multiple electron transfer such as O-atom5 or hydride
ion3,6 transfer. Large H2O/D2O solvent kinetic isotope effects have
been identified in a series of reactions and interpreted as involving
synchronous transfer of an electron and a proton (proton-coupled
electron transfer).2,7 For example,k(H2O)/k(D2O) ) 30 ( 1 for
the oxidation of hydroquinone (H2Q) to benzoquinone (Q) bycis-
[RuIV(bpy)2(py)(O)]2+ at 20.0( 0.2 °C.

This reaction occurs by sequential Ru(IV)f Ru(III), Ru(III) f
Ru(II) steps with rate-limiting proton-coupled electron transfer.2

We report here the existence of a parallel chemistry based on
proton-coupled electron transfer from nitrogen. In this case, the
reaction is between quinone and the morpholine-based protonated
Os(IV) hydrazido complex,trans-[OsIV(tpy)(Cl)2(N(H)N(CH2)4O)]-
(PF6) (tpy ) 2,2′:6′,2′′-terpyridine)8 and occurs withk(H2O)/
k(D2O) ) 41.4 ( 1.3 at 25.0( 0.1 °C.

The preparations of a series of Os(V) hydrazido complexes by
reaction between the corresponding Os(VI) nitrido complex and
a secondary amine have been described elsewhere.9 For example,
trans-[OsVI(tpy)(Cl)2(N)](PF6) undergoes a rapid reaction with
morpholine, HN(CH2)4O, in CH3CN under argon to givetrans-

[OsIV(tpy)(Cl)2(NN(CH2)4O)] followed by oxidation to the Os-
(V) form (1) by the Os(VI) nitrido complex.9 The net reaction is,

trans-[OsV(tpy)(Cl)2(NN(CH2)4O)]+ has been isolated as its PF6

salt and characterized by X-ray crystallography.10 In the structure,
the distorted octahedral arrangement of ligands around the Os
atom in the parent nitrido complex is retained. The Os-N(tpy)
bond lengths range from 2.007(8) to 2.116(10) Å with the shortest
Os-N bond trans to the hydrazido ligand. The Os-N(hydrazido)
bond length is rather short at 1.865(8) Å, the N(1)-N(2) bond
length is 1.235(14) Å, and∠Os-N(1)-N(2) is 158.9(12)°. These
features point to Os-N(hydrazido) multiple bonding. There are
structural similarities with [OsIV(tpy)(bpy)(NN(CH2)4O)]2+ (bpy
) 2,2′-bipyridine).11

Cyclic voltammetric measurements in 1:1 (v/v) CH3CN:H2O
mixtures 0.1 M in [N(n-C4H9)4](PF6) (TBAH) containing1 from
pH 1.0 to 8.0 reveal the existence of a pH-independent Os(VI/V)
couple at 0.81 V versus SSCE and a pH-dependent Os(V/IV)
couple. Based on the pH dependence of theE1/2 value for this
couple, pKa ) 3.20 ( 0.04 for the equilibrium in eq 3.12

trans-[OsIV(tpy)(Cl)2(N(H)N(CH2)4O)]+ (2) undergoes rapid
oxidation by benzoquinone, Q, to givetrans-[OsV(tpy)(Cl)2(NN-
(CH2)4O)]+ and hydroquinone,

The kinetics and stoichiometry of this reaction at 25.0( 0.1 °C
were studied in 1:1 (v/v) CH3CN:H2O at pH 1.0 (µ ) 0.1 M
KNO3) by following characteristic changes in the absorption
spectra of Os(V) and Os(IV)13 under pseudo-first-order conditions
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cis-[RuIV(bpy)2(py)(O)]2+ + H2Q f

cis-[RuII(bpy)2(py)(OH2)]
2+ + Q ∆G° ) -0.87 eV (1)

2 trans-[OsVI(tpy)(Cl)2(N)](PF6) + 2 HNR2 f

trans-[OsV(tpy)(Cl)2(NNR2)](PF6) +
1/2 trans,trans-[(tpy)(Cl)2OsII(N2)OsII(Cl)2(tpy)] + H2NR2

+

(2)

trans-[OsIV(tpy)(Cl)2(N(H)N(CH2)4O)]+ h

trans-[OsIV(tpy)(Cl)2(NN(CH2)4O)] + H+ (3)

2 trans-[OsIV(tpy)(Cl)2(N(H)N(CH2)4O)]+ + Q f

2 trans-[OsV(tpy)(Cl)2(NN(CH2)4O)]+ + H2Q
∆G° ) -0.045 eV (4)
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in benzoquinone. A plot ofkobs versus [Q] is shown in Figure 1.
As shown by the inset, the data are linearized by a plot of 1/kobs

versus 1/[Q] consistent with saturation kinetics (kobs ) {(2k1Ka-
[H+] + 2k2Ka)/([H+] + Ka)}) and the mechanism,

This mechanism is similar in detail to that proposed for the
oxidation of H2Q by cis-[Ru(bpy)2(py)(O)]2+.

As calculated from the slope and intercept-to-slope ratio of
the plot in Figure 1,KA(H2O) ) (4.43 ( 0.18)× 103 M-1 and
k1(H2O) ) (6.61 ( 0.09) × 10-3 s-1 at 25.0( 0.1 °C. Direct
evidence has been obtained for the proposed H-bonded adduct at
high added concentrations of Q, for example, a band at 454 nm
in the UV-visible spectrum shifts to 424 nm (Figure 1,
Supporting Information).

The kinetics were also measured in 1:1 (v/v) CH3CN:H2O/
D2O mixtures. The plot ofkX/kD versusøD in Figure 2 (kX is the
rate constant in H2O/D2O mixtures of mole fraction D,øD.) reveals
a kX/kD isotope effect of 41.4( 1.3 at 25.0( 0.1 °C, and the
linearity of the plot implies that a single proton is involved.14

Kinetic studies as a function of benzoquinone were also inves-
tigated in 1:1 (v/v) CH3CN:D2O (25.0( 0.1 °C, pH 1,µ ) 0.1
M KNO3). Based on the analysis in eqs 5a,b and the data treatment
illustrated for CH3CN:H2O in Figure2, KA(D2O) andk1(D2O)
are (4.28( 0.04) × 103 M-1 and (1.65( 0.03) × 10-4 s-1,

respectively. From these data,k(H2O)/k(D2O) ) 40.0 ( 1.6 for
the redox step (k1) andKA(H2O)/KA(D2O) ) 1.04 ( 0.03.

The kinetic analysis reveals a mechanism for net electron
transfer involving preassociation to form an intermediate with
the large value ofKA attributable to H-bonding as suggested in
eq 5a. The large magnitude of the kinetic isotope effect points to
synchronous electron-proton transfer in the redox step by proton-
coupled electron transfer. This result is notable for the demonstra-
tion of this pathway at a nitrogen atom and for the magnitude of
the kinetic isotope effect.

The importance of proton composition on mechanism is
illustrated by the appearance of a second pathway as the pH is
increased. Under pseudo-first-order conditions and with UV-
visible absorption monitoring, the variations inkobs with [Q] and
[H+] fit well to the expressionkobs) {(2k1Ka[H+] + 2k2Ka)/([H+]
+ Ka)} (Figure 2, Supporting Information). These data are
consistent with prior deprotonation at Os(IV) and the intervention
of a second pathway as illustrated in eqs 6-8,

with k2 ) (4.1 ( 0.1) × 102 s-1. From electrochemical
measurements,∆G° ) -0.045 eV for the net reaction.
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Figure 1. Plot of kobs versus [Q] for the reaction betweentrans-[OsIV-
(tpy)(Cl)2(N(H)N(CH2)4O)](PF6) and benzoquinone in 1:1 (v/v) CH3CN-
H2O (25.0 ( 0.1 °C, pH 1, andµ ) 0.1 M KNO3). A plot of 1/kobs

versus 1/[Q] is shown in the inset.

Figure 2. Plot of kX/kD versusøD for the reaction betweentrans-[OsIV-
(tpy)(Cl)2(N(H)N(CH2)4O)](PF6) and benzoquinone in 1:1 (v/v) CH3CN-
H2O/D2O mixtures (25.0( 0.1 °C, pH 1,µ ) 0.1 M KNO3).
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